Algorithms and Representations for Reinforcement Learning
نویسنده
چکیده
Machine Learning is a field of research aimed at constructing intelligent machines that gain and improve their skills by learning and adaptation. As such, Machine Learning research addresses several classes of learning problems, including for instance, supervised and unsupervised learning. Arguably, the most ubiquitous and realistic class of learning problems, faced by both living creatures and artificial agents, is known as Reinforcement Learning. Reinforcement Learning problems are characterized by a long-term interaction between the learning agent and a dynamic, unfamiliar, uncertain, possibly even hostile environment. Mathematically, this interaction is modeled as a Markov Decision Process (MDP). Probably the most significant contribution of this thesis is in the introduction of a new class of Reinforcement Learning algorithms, which leverage the power of a statistical set of tools known as Gaussian Processes. This new approach to Reinforcement Learning offers viable solutions to some of the major limitations of current Reinforcement Learning methods, such as the lack of confidence intervals for performance predictions, and the difficulty of appropriately reconciling exploration with exploitation. Analysis of these algorithms and their relationship with existing methods also provides us with new insights into the assumptions underlying some of the most popular Reinforcement Learning algorithms to date.
منابع مشابه
Reinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملStable Dynamic Programming and Reinforcement Learning with Dual Representations
We investigate novel, dual algorithms for dynamic programming and reinforcement learning, based on maintaining explicit representations of stationary distributions instead of value functions. In particular, we investigate the convergence properties of standard dynamic programming and reinforcement learning algorithms when they are converted to their natural dual form. Here we uncover advantages...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملDual Temporal Difference Learning
Recently, researchers have investigated novel dual representations as a basis for dynamic programming and reinforcement learning algorithms. Although the convergence properties of classical dynamic programming algorithms have been established for dual representations, temporal difference learning algorithms have not yet been analyzed. In this paper, we study the convergence properties of tempor...
متن کامل